Autonomous activation of CaMKII exacerbates diastolic calcium leak during beta-adrenergic stimulation in cardiomyocytes of metabolic syndrome rats. Academic Article uri icon

Overview

abstract

  • Autonomous Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation induces abnormal diastolic Ca2+ leak, which leads to triggered arrhythmias in a wide range of cardiovascular diseases, including diabetic cardiomyopathy. In hyperglycemia, Ca2+ handling alterations can be aggravated under stress conditions via the β-adrenergic signaling pathway, which also involves CaMKII activation. However, little is known about intracellular Ca2+ handling disturbances under β-adrenergic stimulation in cardiomyocytes of the prediabetic metabolic syndrome (MetS) model with obesity, and the participation of CaMKII in these alterations. MetS was induced in male Wistar rats by administering 30 % sucrose in drinking water for 16 weeks. Fluo 3-loaded MetS cardiomyocytes exhibited augmented diastolic Ca2+ leak (in the form of spontaneous Ca2+ waves) under basal conditions and that Ca2+ leakage was exacerbated by isoproterenol (ISO, 100 nM). At the molecular level, [3H]-ryanodine binding and basal phosphorylation of cardiac ryanodine receptor (RyR2) at Ser2814, a CaMKII site, were increased in heart homogenates of MetS rats with no changes in RyR2 expression. These alterations were not further augmented by Isoproterenol. SERCA pump activity was augmented 48 % in MetS hearts before β-adrenergic stimuli, which is associated to augmented PLN phosphorylation at T17, a target of CaMKII. In MetS hearts. CaMKII auto-phosphorylation (T287) was increased by 80 %. The augmented diastolic Ca2+ leak was prevented by CaMKII inhibition with AIP. In conclusion, CaMKII autonomous activation in cardiomyocytes of MetS rats with central obesity significantly contributes to abnormal diastolic Ca2+ leak, increasing the propensity for β-adrenergic receptor-driven lethal arrhythmias.

publication date

  • August 12, 2020

Research

keywords

  • Calcium
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Diastole
  • Metabolic Syndrome
  • Myocytes, Cardiac
  • Receptors, Adrenergic, beta

Identity

PubMed Central ID

  • PMC7530131

Scopus Document Identifier

  • 85090551688

Digital Object Identifier (DOI)

  • 10.1016/j.ceca.2020.102267

PubMed ID

  • 32920522

Additional Document Info

volume

  • 91