Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. Academic Article uri icon

Overview

abstract

  • Targeting inhibitory immune checkpoint receptor pathways has shown remarkable success in improving anticancer T cell responses for the elimination of tumors. Such immunotherapeutic strategies are being pursued for HIV remission. Metformin has shown favorable clinical outcomes in enhancing the efficacy of programmed cell death-1 (PD-1) blockade and restoring antitumor T cell immunity. Furthermore, monocytes are known to be a strong predictor of progression-free survival in response to anti-PD-1 immunotherapy. In a single-arm clinical trial, we evaluated the immunological effects over an 8-week course of metformin therapy in seven euglycemic, virally suppressed HIV-infected participants on combination antiretroviral therapy (cART). We assessed changes in peripheral HIV-Gag-specific T cell responses to immune checkpoint blockade (ICB) with anti-PD-L1 and anti-T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) monoclonal antibodies (mAbs) and changes in CD8 T cell and monocyte subsets using flow cytometry. Study participants were all male, 71% (5/7) Caucasian, with a median age of 61 years, CD4 count of 739 cells/μL, and plasma HIV RNA of <50 copies/mL on stable cART for >1 year. Ex vivo polyfunctional HIV-Gag-specific CD8 T cell responses to anti-PD-L1 mAb significantly improved (p < .05) over the 8-week course of metformin therapy. Moreover, frequencies of both intermediate (CD14+CD16+; r = 0.89, p = .01) and nonclassical (CD14lowCD16+; r = 0.92, p = .01) monocytes at entry were predictive of the magnitude of the anti-HIV CD8 T cell responses to PD-L1 blockade. Collectively, these findings highlight that 8-week course of metformin increases the polyfunctionality of CD8 T cells and that baseline monocyte subset frequencies may be a potential determinant of PD-L1 blockade efficacy. These data provide valuable information for HIV remission trials that utilize ICB strategies to enhance anti-HIV CD8 T cell immunity.

publication date

  • November 5, 2020

Research

keywords

  • HIV Infections
  • Metformin

Identity

PubMed Central ID

  • PMC7864091

Scopus Document Identifier

  • 85099128086

Digital Object Identifier (DOI)

  • 10.1089/AID.2020.0172

PubMed ID

  • 33019813

Additional Document Info

volume

  • 37

issue

  • 1