Liver Injury Impaired 25-Hydroxylation of Vitamin D Suppresses Intestinal Paneth Cell defensins, leading to Gut Dysbiosis and Liver Fibrogenesis.
Academic Article
Overview
abstract
Vitamin D deficiency is co-prevalent with various liver diseases including cirrhosis, while the underlying mechanism remains elusive. Vitamin D receptor (VDR) is abundantly expressed in the distal region of small intestine, where the Paneth cells are enriched, suggesting that vitamin D signaling may modulates the intestinal Paneth cells and their production of defensins to restrain microbiome growth in the small intestine. In this study we found that in carbon tetrachloride-induced liver injury, hepatic 25-hydroxylation of vitamin D was impaired, leading to down regulated expression of Paneth cell fensins in the small intestine, gut dysbiosis, and endotoxinemia. While intraperitoneal injection of endotoxin (lipopolysaccharides) alone did not elicit liver fibrosis, it exacerbated the carbon tetrachloride initiated liver fibrogenesis. Oral gavage of synthetic Paneth cell alpha-defensin 5 (DEFA5) restored the homeostasis of gut microbiota, reduced endotoxemia, relieved liver inflammation, and ameliorated liver fibrosis. Likewise, Cholestyramine, cationic resin that can sequestrate endotoxin in the intestine, attenuated the liver fibrosis as well. Fecal transplant of the microbes derived from the DEFA5-treated donors improved liver fibrosis in the recipient mice. The intestinal Vdrconditional knockout mice exhibited reduction of Paneth cell defensins and lysozyme production, and worsened liver injury and fibrogenesis. Thus, liver injury impairs synthesis of 25(OH)VD3, which consequently impedes the Paneth cells functions in the small intestine, leading to gut dysbiosis for liver fibrogenesis.