Sub-2 mm depth of interaction localization in PET detectors with prismatoid light guide arrays and single-ended readout using convolutional neural networks. Academic Article uri icon

Overview

abstract

  • PURPOSE: Depth of interaction (DOI) readout in PET imaging has been researched in efforts to mitigate parallax error, which would enable the development of small diameter, high-resolution PET scanners. However, DOI PET has not yet been commercialized due to the lack of practical, cost-effective, and data efficient DOI readout methods. The rationale for this study was to develop a supervised machine learning algorithm for DOI estimation in PET that can be trained and deployed on unique sets of crystals. METHODS: mm RESULTS: An average DOI resolution of 1.84 mm full width at half maximum (FWHM) across all crystals was achieved when using all readout signals per event with the CNN compared to 3.04 mm FWHM DOI resolution using classical estimation. When using only the 4 highest signals per event, an average DOI resolution of 1.92 mm FWHM was achieved, representing only a 4% dropoff in CNN performance compared to using all non-zero pixels per event. CONCLUSIONS: Our CNN-based DOI estimation algorithm provides the best reported DOI resolution in a single-ended readout module and can be readily deployed on crystals not used for model training.

publication date

  • February 2, 2021

Research

keywords

  • Neural Networks, Computer
  • Positron-Emission Tomography
  • Tomography, X-Ray Computed

Identity

Scopus Document Identifier

  • 85100160295

Digital Object Identifier (DOI)

  • 10.1002/mp.14654

PubMed ID

  • 33305482

Additional Document Info

volume

  • 48

issue

  • 3