Sex and age influence gonadal steroid hormone receptor distributions relative to estrogen receptor β-containing neurons in the mouse hypothalamic paraventricular nucleus. Academic Article uri icon

Overview

abstract

  • Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) β and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERβ with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERβ-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERβ-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERβ-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERβ-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERβ-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.

publication date

  • January 14, 2021

Research

keywords

  • Estrogen Receptor beta
  • Gonadal Steroid Hormones
  • Neurons
  • Paraventricular Hypothalamic Nucleus
  • Sex Characteristics

Identity

PubMed Central ID

  • PMC8053678

Scopus Document Identifier

  • 85104532881

Digital Object Identifier (DOI)

  • 10.1002/cne.25093

PubMed ID

  • 33341960

Additional Document Info

volume

  • 529

issue

  • 9