Design of a PEGylated Antimicrobial Prodrug with Species-Specific Activation. Academic Article uri icon

Overview

abstract

  • The rise of multidrug-resistant (MDR) "superbugs" has created an urgent need to develop new classes of antimicrobial agents to target these organisms. Oligothioetheramides (oligoTEAs) are a unique class of antimicrobial peptide (AMP) mimetics with one promising compound, BDT-4G, displaying potent activity against MDR Pseudomonas aeruginosa clinical isolates. Despite widely demonstrated potency, BDT-4G and other AMP mimetics have yet to enjoy broad preclinical success against systemic infections, primarily due to their cytotoxicity. In this work, we explore a prodrug strategy to render BDT-4G inactive until it is exposed to an enzyme secreted by the targeted bacteria. The prodrug consists of polyethylene glycol (PEG) conjugated to BDT-4G by a peptide substrate. PEG serves to inactivate and reduce the toxicity of BDT-4G by masking its cationic charge and antimicrobial activity is recovered following site-specific cleavage of the short peptide linker by LasA, a virulence factor secreted by P. aeruginosa. This approach concurrently reduces cytotoxicity by greater than 1 order of magnitude in vitro and provides species specificity through the identity of the cleavable linker.

publication date

  • January 11, 2021

Research

keywords

  • Anti-Infective Agents
  • Prodrugs

Identity

PubMed Central ID

  • PMC8270352

Scopus Document Identifier

  • 85099939067

Digital Object Identifier (DOI)

  • 10.1021/acs.biomac.0c01695

PubMed ID

  • 33428376

Additional Document Info

volume

  • 22

issue

  • 2