Surgical Planning for Adult Spinal Deformity: Anticipated Sagittal Alignment Corrections According to the Surgical Level.
Academic Article
Overview
abstract
STUDY DESIGN: Retrospective cohort study. OBJECTIVES: Establish simultaneous focal and regional corrective guidelines accounting for reciprocal global and pelvic compensation. METHODS: 433 ASD patients (mean age 62.9 yrs, 81.3% F) who underwent corrective realignment (minimum L1-pelvis) were included. Sagittal parameters, and segmental and regional Cobb angles were assessed pre and post-op. Virtual postoperative alignment was generated by combining post-op alignment of the fused spine with the pre-op alignment on the unfused thoracic kyphosis and the pre-op pelvic retroversion. Regression models were then generated to predict the relative impact of segmental (L4-L5) and regional (L1-L4) corrections on PT, SVA (virtual), and TPA. RESULTS: Baseline analysis revealed distal (L4-S1) lordosis of 33 ± 15°, flat proximal (L1-L4) lordosis (1.7 ± 17°), and segmental kyphosis from L2-L3 to T10-T11. Post-op, there was no mean change in distal lordosis (L5-S1 decreased by 2°, and L4-L5 increased by 2°), while the more proximal lordosis increased by 18 ± 16°. Regression formulas revealed that Δ10° in distal lordosis resulted in Δ10° in TPA, associated with Δ100 mm in SVA or Δ3° in PT; Δ10° in proximal lordosis yielded Δ5° in TPA associated with Δ50 mm in SVA; and finally Δ10° in thoraco-lumbar junction yielded Δ2.5° in TPA associated with Δ25 mm in SVA and no impact on PT correction. CONCLUSIONS: Overall impact of lumbar lordosis restoration is critically determined by location of correction. Distal correction leads to a greater impact on global alignment and pelvic retroversion. More specifically, it can be assumed that 1° L4-S1 lordosis correction produces 1° change in TPA / 10 mm change in SVA and 0.5° in PT.