Intraocular lens power calculation using adjusted corneal power in eyes with prior myopic laser vision correction. Academic Article uri icon

Overview

abstract

  • PURPOSE: To evaluate the prediction accuracy of the intraocular lens (IOL) power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio in the Haigis formula (Haigis-E) in patients with a history of prior myopic laser vision correction. METHODS: Seventy eyes from 70 cataract patients who underwent cataract surgery and had a history of myopic laser vision correction were enrolled. The adjusted corneal power obtained with conventional keratometry (K) was calculated using the posterior/anterior corneal curvature radii ratio measured by a single Scheimpflug camera. In eyes longer than 25.0 mm, half of the Wang-Koch (WK) adjustment was applied. The median absolute error (MedAE) and the percentage of eyes that achieved a postoperative refractive prediction error within ± 0.50 diopters (D) based on the Haigis-E method was compared with those in the Shammas, Haigis-L, and Barrett True-K no-history methods. RESULTS: The MedAE predicted using the Haigis-E (0.33 D) was significantly smaller than that obtained using the Shammas (0.44 D), Haigis-L (0.43 D), and Barrett True-K (0.44 D) methods (P < 0.001, P = 0.001, and P = 0.014, respectively). The percentage of eyes within ± 0.50 D of refractive prediction error using the Haigis-E (78.6%) was significantly greater than that produced using the Shammas (57.1%), Haigis-L (58.6%), and Barrett True-K (61.4%) methods (P = 0.025). CONCLUSION: IOL power calculation using the adjusted corneal power according to the posterior/anterior corneal curvature radii ratio and modified WK adjustment in the Haigis formula could improve the refraction prediction accuracy after cataract surgery in eyes with prior myopic laser vision correction.

publication date

  • July 21, 2021

Research

keywords

  • Lenses, Intraocular
  • Phacoemulsification

Identity

Scopus Document Identifier

  • 85110733999

Digital Object Identifier (DOI)

  • 10.1007/s00417-021-05309-7

PubMed ID

  • 34287694

Additional Document Info

volume

  • 259

issue

  • 12