Artificial neural network prediction of same-day discharge following primary total knee arthroplasty based on preoperative and intraoperative variables. Academic Article uri icon

Overview

abstract

  • AIMS: This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA). METHODS: Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional machine-learning algorithm. Variables collected from 28,742 patients were analyzed based on their contribution to hospital length of stay. RESULTS: The predictability of the ANN model, area under the curve (AUC) = 0.801, was similar to the logistic regression model (AUC = 0.796) and identified certain variables as important factors to predict same-day discharge. The ten most important factors favouring same-day discharge in the ANN model include preoperative sodium, preoperative international normalized ratio, BMI, age, anaesthesia type, operating time, dyspnoea status, functional status, race, anaemia status, and chronic obstructive pulmonary disease (COPD). Six of these variables were also found to be significant on logistic regression analysis. CONCLUSION: Both ANN modelling and logistic regression analysis revealed clinically important factors in predicting patients who can undergo safely undergo same-day discharge from an outpatient TKA. The ANN model provides a beneficial approach to help determine which perioperative factors can predict same-day discharge as of 2018 perioperative recovery protocols. Cite this article: Bone Joint J 2021;103-B(8):1358-1366.

publication date

  • August 1, 2021

Research

keywords

  • Ambulatory Surgical Procedures
  • Arthroplasty, Replacement, Knee
  • Neural Networks, Computer
  • Osteoarthritis, Knee
  • Patient Discharge

Identity

Scopus Document Identifier

  • 85113232071

Digital Object Identifier (DOI)

  • 10.1302/0301-620X.103B8.BJJ-2020-1013.R2

PubMed ID

  • 34334050

Additional Document Info

volume

  • 103-B

issue

  • 8