Recurrent loss of chromosome 22 and SMARCB1 deletion in extra-axial chordoma: A clinicopathological and molecular analysis. Academic Article uri icon

Overview

abstract

  • Extra-axial chordoma is a rare neoplasm of extra-axial skeleton and soft tissue that shares identical histomorphologic and immunophenotypic features with midline chordoma. While genetic changes in conventional chordoma have been well-studied, the genomic alterations of extra-axial chordoma have not been reported. It is well known that conventional chordoma is a tumor with predominantly non-random copy number alterations and low mutational burden. Herein we describe the clinicopathologic and genomic characteristics of six cases of extra-axial chordoma, with genome-wide high-resolution single nucleotide polymorphism array, fluorescence in situ hybridization and targeted next-generation sequencing (NGS) analysis. The patients presented at a mean age of 33 years (range: 21-54) with a female to male ratio of 5:1. Four cases were histologically conventional type, presented with bone lesions and three of them had local recurrence. Two cases were poorly differentiated chordomas, presented with intra-articular soft tissue masses and both developed distant metastases. All cases showed brachyury positivity and the two poorly differentiated chordomas showed in addition loss of INI-1 expression by immunohistochemical analysis. Three of four extra-axial conventional chordomas showed simple genome with loss of chromosome 22 or a heterozygous deletion of SMARCB1. Both poorly differentiated chordomas demonstrated a complex hyperdiploid genomic profile with gain of multiple chromosomes and homozygous deletion of SMARCB1. Our findings show that heterozygous deletion of SMARCB1 or the loss of chromosome 22 is a consistent abnormality in extra-axial chordoma and transformation to poorly differentiated chordoma is characterized by homozygous loss of SMARCB1 associated with genomic complexity and instability such as hyperdiploidy.

publication date

  • August 26, 2021

Research

keywords

  • Biomarkers, Tumor
  • Chordoma
  • Fetal Proteins
  • SMARCB1 Protein
  • T-Box Domain Proteins

Identity

PubMed Central ID

  • PMC8511200

Scopus Document Identifier

  • 85113380680

Digital Object Identifier (DOI)

  • 10.1002/gcc.22992

PubMed ID

  • 34392582

Additional Document Info

volume

  • 60

issue

  • 12