Abnormal B-lymphoblasts in myelodysplastic syndromes and myeloproliferative neoplasms other than chronic myeloid leukemia.
Academic Article
Overview
abstract
BACKGROUND: Lineage infidelity is characteristic of mixed phenotype acute leukemia and is also seen in blast phase of chronic myeloid leukemia (CML), myeloid/lymphoid neoplasia with eosinophilia and gene rearrangements, and subtypes of acute myeloid leukemia. Driver genetic events often occur in multipotent progenitor cells in myeloid neoplasms, suggesting that multilineage output may be more common than appreciated. This phenomenon is not well studied in myelodysplastic syndrome (MDS) and non-CML myeloproliferative neoplasms (MPN). METHODS: We systematically evaluated phenotypic lineage infidelity by reviewing bone marrow pathology and flow cytometry (FC) studies of 1262 consecutive patients with a diagnosis of MDS and/or non-CML MPN. We assessed B- and T-cells in these patients by FC. When abnormal B-lymphoblast (ABLB) populations were detected, we additionally evaluated immature B-cells using a high sensitivity FC assay for B-lymphoblastic leukemia/lymphoma (B-ALL). RESULTS: We identified 9 patients (7 MDS, 7/713, 1%; 2 non-CML MPN, 2/312, 0.6%; 0 in MDS/MPN) with low-level ABLB populations (0.012%-3.6% of WBCs in marrow) with abnormal immunophenotypes. Genetic studies on flow sorted cell populations confirmed that some ABLB populations were clonally related to myeloid blasts (4/6, 67%). On follow-up, ABLB populations in 8/9 patients remained stable or disappeared. Only 1 case progressed to B-ALL. CONCLUSIONS: These findings demonstrate that phenotypically detectable abnormal immature B lineage output occurs in MDS and non-CML MPN, albeit rarely. While presence of ABLB does not necessarily reflect blast crisis, the underlying disease biology of our findings may ultimately be relevant to patient management and warrants further investigation.