Synthetic aperture interference light (SAIL) microscopy for high-throughput label-free imaging. Academic Article uri icon

Overview

abstract

  • Quantitative phase imaging (QPI) is a valuable label-free modality that has gained significant interest due to its wide potentials, from basic biology to clinical applications. Most existing QPI systems measure microscopic objects via interferometry or nonlinear iterative phase reconstructions from intensity measurements. However, all imaging systems compromise spatial resolution for the field of view and vice versa, i.e., suffer from a limited space bandwidth product. Current solutions to this problem involve computational phase retrieval algorithms, which are time-consuming and often suffer from convergence problems. In this article, we presented synthetic aperture interference light (SAIL) microscopy as a solution for high-resolution, wide field of view QPI. The proposed approach employs low-coherence interferometry to directly measure the optical phase delay under different illumination angles and produces large space-bandwidth product label-free imaging. We validate the performance of SAIL on standard samples and illustrate the biomedical applications on various specimens: pathology slides, entire insects, and dynamic live cells in large cultures. The reconstructed images have a synthetic numeric aperture of 0.45 and a field of view of 2.6 × 2.6 mm2. Due to its direct measurement of the phase information, SAIL microscopy does not require long computational time, eliminates data redundancy, and always converges.

publication date

  • December 8, 2021

Identity

PubMed Central ID

  • PMC8660142

Scopus Document Identifier

  • 85121154529

Digital Object Identifier (DOI)

  • 10.1063/5.0065628

PubMed ID

  • 34924588

Additional Document Info

volume

  • 119

issue

  • 23