Diffusion MRI fiber diameter for muscle denervation assessment. Academic Article uri icon

Overview

abstract

  • BACKGROUND: To develop and evaluate a diffusion MRI-based apparent muscle fiber diameter (AFD) method in patients with muscle denervation. It was hypothesized that AFD differences between denervated, non-denervated and control muscles would be greater than those from standard diffusion metrics. METHODS: A spin-echo diffusion acquisition with multi-b-valued diffusion sampling was used. An orientation-invariant dictionary approach utilized a cylinder-based forward model and multi-compartment model for obtaining restricted and free fractions. Simulations were performed to determine precision, bias, and optimize dictionary parameters. In all, 18 exams of patients with muscle denervation and 8 exams of healthy subjects were performed at 3T. Six regions of interests (ROIs) within separate shoulder muscles were selected, yielding three groups consisting 47 control (healthy), 36 non-denervated (patients), and 68 denervated (patients) muscle ROIs. Two-sample t-tests (α=0.05) between groups were performed with Holm-Bonferroni correction. T2- and fat fraction (FF)-mapping were acquired for comparison. RESULTS: Mean AFD was 89.7±13.6 µm in control, 71.6±15.3 µm in non-denervated, and 60.7±15.9 µm in denervated muscles and were significantly different (P<0.001) in paired comparisons and in 10/12 individual muscle region comparisons. Correlation between AFD and FF (-0.331, P<0.001) was low, but correlation between FA and FF was negligible (0.197, P=0.016). Correlation was low between AFD and T2 (-0.395, P<0.001) and between FA and T2 (0.359, P<0.001). CONCLUSIONS: Diffusion MRI-based AFD complements T2- and FF-mapping techniques to non-invasively assess muscle denervation.

publication date

  • January 1, 2022

Identity

PubMed Central ID

  • PMC8666740

Scopus Document Identifier

  • 84937575734

Digital Object Identifier (DOI)

  • 10.21037/qims-21-313

PubMed ID

  • 34993062

Additional Document Info

volume

  • 12

issue

  • 1