Cumulus removal (CR) is a central prerequisite step for many protocols involved in the assisted reproductive technology (ART) such as intracytoplasmic sperm injection (ICSI) and preimplantation genetic testing (PGT). The most prevalent CR technique is based upon laborious manual pipetting, which suffers from inter-operator variability and therefore a lack of standardization. Automating CR procedures would alleviate many of these challenges, improving the odds of a successful ART or PGT outcome. In this study, a chip-scale ultrasonic device consisting of four interdigitated transducers (IDT) on a lithium niobate substrate has been engineered to deliver megahertz (MHz) range ultrasound to perform denudation. The acoustic streaming and acoustic radiation force agitate COCs inside a microwell placed on top of the LiNbO3 substrate to remove the cumulus cells from the oocytes. This paper demonstrates the capability and safety of the denudation procedure utilizing surface acoustic wave (SAW), achieving automation of this delicate manual procedure and paving the steps toward improved and standardized oocyte manipulation.