Cell-Type Specific Expression of Hyaluronan Synthases HAS2 and HAS3 Promotes Goblet Cell Hyperplasia in Allergic Airway Inflammation. Academic Article uri icon

Overview

abstract

  • Allergic rhinitis (AR) is a multifactorial airway disease characterized by basal and goblet cell hyperplasia. Hyaluronic acid (HA) is a major component of extracellular matrix and a critical contributor to tissue repair and remodeling after injury. We previously demonstrated that the intermediate progenitor cell (IPC) surface marker CD44v3 is upregulated in the basal and suprabasal layers of well-differentiated primary human nasal epithelial (HNE) cells after stimulation with the Th2 cytokine interleukin (IL)-4, and an antibody blocking the CD44v3-HA interaction suppressed IL-4-induced goblet cell hyperplasia. We now show that the expression of HA and two HA synthases, HAS2 and HAS3, was upregulated in both the nasal surface epithelium of subjects with AR and IL-4-stimulated HNE cells. Inhibition of HA synthesis by 4-methylumbelliferone (4-MU) suppressed IL-4-induced goblet cell hyperplasia. Moreover, HAS2 and HAS3 were expressed in IPCs depending on the differentiation events, as follows: the rapid, transient upregulation of HAS2 induced basal IPC proliferation and basal-to-suprabasal transition, whereas the delayed upregulation of HAS3 promoted the transition of suprabasal IPCs to a goblet cell fate. 4-MU treatment in house dust mite-induced murine AR model attenuated goblet cell metaplasia. Lastly, HA levels in nasal epithelial lining fluids from AR patients positively correlated with the levels of mediators causing allergic inflammation. These data suggest that HA produced following the sequential upregulation of HAS2 and HAS3 contributes to goblet cell hyperplasia in allergic airway inflammation and modulates disease progression.

publication date

  • June 9, 2022

Research

keywords

  • Goblet Cells
  • Hyaluronan Synthases
  • Hymecromone
  • Rhinitis, Allergic

Identity

Digital Object Identifier (DOI)

  • 10.1165/rcmb.2021-0527OC

PubMed ID

  • 35679095