Practical and thermodynamic constraints on electromicrobially accelerated CO2 mineralization. Academic Article uri icon

Overview

abstract

  • By the end of the century, tens of gigatonnes of CO2 will need to be removed from the atmosphere every year to maintain global temperatures. Natural weathering of ultramafic rocks and subsequent mineralization reactions can convert CO2 into ultra-stable carbonates. Although this will draw down all excess CO2, it will take thousands of years. CO2 mineralization could be accelerated by weathering ultramafic rocks with biodegradable lixiviants. We show that if these lixiviants come from cellulosic biomass, this demand could monopolize the world's biomass supply. We demonstrate that electromicrobial production technologies (EMP) that combine renewable electricity and microbial metabolism could produce lixiviants for as little as $200 to $400 per tonne at solar electricity prices achievable within the decade. We demonstrate that EMP could make enough lixiviants to sequester a tonne of CO2 for less than $100. This work highlights the potential of this approach and the need for extensive R&D.

publication date

  • July 16, 2022

Identity

PubMed Central ID

  • PMC9385556

Scopus Document Identifier

  • 85135723791

Digital Object Identifier (DOI)

  • 10.1016/j.isci.2022.104769

PubMed ID

  • 35992063

Additional Document Info

volume

  • 25

issue

  • 8