Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: a systematic review and meta-analysis. Review uri icon

Overview

abstract

  • BACKGROUND: The gut microbiome promotes specific immune responses, and in turn, the immune system has a hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoimmune conditions. METHODOLOGY: We searched PubMed, Web of Science, and Embase to identify relevant articles to be included in this study. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse variance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold change, and the standard error was calculated from the p-values, sample size, and fold change. RESULTS: We screened 3874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune and 45 cancer studies with 4208 healthy human controls and 5957 disease cases from 27 countries were included in this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.5 log fold change in 5 studies) and 11 studies (+3.6 log fold change in 5 studies), respectively. Conversely, Bacteroides was the most prominent genus, which was found to be increased in 12 autoimmune studies (+0.2 log fold change in 6 studies) and decreased in six cancer studies (-0.3 log fold change in 4 studies). Sulfur-metabolism pathways were found to be the most frequent pathways among the member of cancer-increased genus and species. CONCLUSIONS: The surprising reproducibility of these associations across studies and geographies suggests a shared underlying mechanism shaping the microbiome across cancers and autoimmune diseases. Video Abstract.

publication date

  • December 9, 2022

Research

keywords

  • Autoimmune Diseases
  • Neoplasms

Identity

PubMed Central ID

  • PMC9733034

Scopus Document Identifier

  • 85143560432

Digital Object Identifier (DOI)

  • 10.1186/s40168-022-01373-1

PubMed ID

  • 36482486

Additional Document Info

volume

  • 10

issue

  • 1