Developing a Parsimonious Frailty Index for Older, Multimorbid Adults With Heart Failure Using Machine Learning.
Academic Article
Overview
abstract
Frailty is associated with adverse outcomes in heart failure (HF). A parsimonious frailty index (FI) that predicts outcomes of older, multimorbid patients with HF could be a useful resource for clinicians. A retrospective study of veterans hospitalized from October 2015 to October 2018 with HF, aged ≥50 years, and discharged home developed a 10-item parsimonious FI using machine learning from diagnostic codes, laboratory results, vital signs, and ejection fraction (EF) from outpatient encounters. An unsupervised clustering technique identified 5 FI strata: severely frail, moderately frail, mildly frail, prefrail, and robust. We report hazard ratios (HRs) of mortality, adjusting for age, gender, race, and EF and odds ratios (ORs) for 30-day and 1-year emergency department visits and all-cause hospitalizations after discharge. We identified 37,431 veterans (age, 73 ± 10 years; co-morbidity index, 5 ± 3; 43.5% with EF ≤40%). All frailty groups had a higher mortality than the robust group: severely frail (HR 2.63, 95% confidence interval [CI] 2.42 to 2.86), moderately frail (HR 2.04, 95% CI 1.87 to 2.22), mildly frail (HR 1.60, 95% CI 1.47 to 1.74), and prefrail (HR 1.18, 95% CI: 1.07 to 1.29). The associations between frailty and mortality remained unchanged in the stratified analysis by age or EF. The combined (severely, moderately, and mildly) frail group had higher odds of 30-day emergency visits (OR 1.62, 95% CI 1.43 to 1.83), all-cause readmission (OR, 1.75, 95% CI 1.52 to 2.02), 1-year emergency visits (OR 1.70, 95% CI 1.53 to 1.89), rehospitalization (OR 2.18, 95% CI 1.97 to 2.41) than the robust group. In conclusion, a 10-item FI is associated with postdischarge outcomes among patients discharged home after a hospitalization for HF. A parsimonious FI may aid clinical prediction at the point of care.