Human cortical interneurons optimized for grafting specifically integrate, abort seizures, and display prolonged efficacy without over-inhibition. Academic Article uri icon

Overview

abstract

  • Previously, we demonstrated the efficacy of human pluripotent stem cell (hPSC)-derived GABAergic cortical interneuron (cIN) grafts in ameliorating seizures. However, a safe and reliable clinical translation requires a mechanistic understanding of graft function, as well as the assurance of long-term efficacy and safety. By employing hPSC-derived chemically matured migratory cINs in two models of epilepsy, we demonstrate lasting efficacy in treating seizures and comorbid deficits, as well as safety without uncontrolled growth. Host inhibition does not increase with increasing grafted cIN densities, assuring their safety without the risk of over-inhibition. Furthermore, their closed-loop optogenetic activation aborted seizure activity, revealing mechanisms of graft-mediated seizure control and allowing graft modulation for optimal translation. Monosynaptic tracing shows their extensive and specific synaptic connections with host neurons, resembling developmental connection specificity. These results offer confidence in stem cell-based therapy for epilepsy as a safe and reliable treatment for patients suffering from intractable epilepsy.

publication date

  • January 9, 2023

Research

keywords

  • Epilepsy
  • Pluripotent Stem Cells

Identity

PubMed Central ID

  • PMC10023356

Scopus Document Identifier

  • 85149962089

Digital Object Identifier (DOI)

  • 10.1016/j.neuron.2022.12.014

PubMed ID

  • 36626901

Additional Document Info

volume

  • 111

issue

  • 6