External Validation of SpineNet, an Open-Source Deep Learning Model for Grading Lumbar Disk Degeneration MRI Features, Using the Northern Finland Birth Cohort 1966. Academic Article uri icon

Overview

abstract

  • STUDY DESIGN: This is a retrospective observational study to externally validate a deep learning image classification model. OBJECTIVE: Deep learning models such as SpineNet offer the possibility of automating the process of disk degeneration (DD) classification from magnetic resonance imaging (MRI). External validation is an essential step to their development. The aim of this study was to externally validate SpineNet predictions for DD using Pfirrmann classification and Modic changes (MCs) on data from the Northern Finland Birth Cohort 1966 (NFBC1966). SUMMARY OF DATA: We validated SpineNet using data from 1331 NFBC1966 participants for whom both lumbar spine MRI data and consensus DD gradings were available. MATERIALS AND METHODS: SpineNet returned Pfirrmann grade and MC presence from T2-weighted sagittal lumbar MRI sequences from NFBC1966, a data set geographically and temporally separated from its training data set. A range of agreement and reliability metrics were used to compare predictions with expert radiologists. Subsets of data that match SpineNet training data more closely were also tested. RESULTS: Balanced accuracy for DD was 78% (77%-79%) and for MC 86% (85%-86%). Interrater reliability for Pfirrmann grading was Lin concordance correlation coefficient=0.86 (0.85-0.87) and Cohen κ=0.68 (0.67-0.69). In a low back pain subset, these reliability metrics remained largely unchanged. In total, 20.83% of disks were rated differently by SpineNet compared with the human raters, but only 0.85% of disks had a grade difference >1. Interrater reliability for MC detection was κ=0.74 (0.72-0.75). In the low back pain subset, this metric was almost unchanged at κ=0.76 (0.73-0.79). CONCLUSIONS: In this study, SpineNet has been benchmarked against expert human raters in the research setting. It has matched human reliability and demonstrates robust performance despite the multiple challenges facing model generalizability.

publication date

  • December 30, 2022

Research

keywords

  • Deep Learning
  • Intervertebral Disc Degeneration
  • Low Back Pain

Identity

PubMed Central ID

  • PMC9990601

Scopus Document Identifier

  • 85150215291

Digital Object Identifier (DOI)

  • 10.1097/BRS.0000000000004572

PubMed ID

  • 36728678

Additional Document Info

volume

  • 48

issue

  • 7