Periodic-net: an end-to-end data driven framework for diffuse optical imaging of breast cancer from noisy boundary data.
Academic Article
Overview
abstract
SIGNIFICANCE: The machine learning (ML) approach plays a critical role in assessing biomedical imaging processes especially optical imaging (OI) including segmentation, classification, and reconstruction, intending to achieve higher accuracy efficiently. AIM: This research aims to develop an end-to-end deep learning framework for diffuse optical imaging (DOI) with multiple datasets to detect breast cancer and reconstruct its optical properties in the early stages. APPROACH: 16 RESULTS: The results of image reconstruction on numerical and phantom datasets demonstrate that the proposed network provides higher-quality images with a greater amount of small details, superior immunity to noise, and sharper edges with a reduction in image artifacts than other state-of-the-art competitors. CONCLUSIONS: The network is highly effective at the simultaneous reconstruction of optical properties, i.e., absorption and reduced scattering coefficients, by optimizing the imaging time without degrading inclusions localization and image quality.