Noradrenergic Input from Nucleus of the Solitary Tract Regulates Parabrachial Activity in Mice. Academic Article uri icon

Overview

abstract

  • The parabrachial complex (PB) is critically involved in aversive processes, and chronic pain is associated with amplified activity of PB neurons in rodent models of neuropathic pain. Here, we demonstrate that catecholaminergic input from the caudal nucleus of the solitary tract (cNTScat), a stress responsive region that integrates interoceptive and exteroceptive signals, causes amplification of PB activity and their sensory afferents. We used a virally mediated expression of a norepinephrine (NE) sensor, NE2h, fiber photometry, and extracellular recordings in anesthetized mice to show that noxious mechanical and thermal stimuli activate cNTS neurons. These stimuli also produce prolonged NE transients in PB that far outlast the noxious stimuli. Similar NE transients can be evoked by focal electrical stimulation of cNTS, a region that contains the noradrenergic A2 cell group that projects densely on PB. In vitro, optical stimulation of cNTScat terminals depolarized PB neurons and caused a prolonged increase the frequency of excitatory synaptic activity. A dual opsin approach showed that sensory afferents from the caudal spinal trigeminal nucleus are potentiated by cNTScat terminal activation. This potentiation was coupled with a decrease in the paired pulse ratio (PPR), consistent with an cNTScat-mediated increase in the probability of release at SpVc synapses. Together, these data suggest that A2 neurons of the cNTS generate long lasting NE transients in PB which increase excitability and potentiate responses of PB neurons to sensory inputs. These reveal a mechanism through which stressors from multiple modalities may potentiate the aversiveness of nociceptive stimuli.

publication date

  • May 4, 2023

Research

keywords

  • Chronic Pain
  • Solitary Nucleus

Identity

PubMed Central ID

  • PMC10162360

Scopus Document Identifier

  • 85157989352

Digital Object Identifier (DOI)

  • 10.1016/j.neuron.2020.12.023

PubMed ID

  • 37072175

Additional Document Info

volume

  • 10

issue

  • 5