Synthesis of 1-(2-Hydroxyphenyl)- and (3,5-Dichloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as Promising Scaffolds for the Development of Novel Antimicrobial and Anticancer Agents. Academic Article uri icon

Overview

abstract

  • Increasing antimicrobial resistance among Gram-positive pathogens and pathogenic fungi remains one of the major public healthcare threats. Therefore, novel antimicrobial candidates and scaffolds are critically needed to overcome resistance in Gram-positive pathogens and drug-resistant fungal pathogens. In this study, we explored 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid and its 3,5-dichloro-2-hydroxyphenyl analogue for their in vitro antimicrobial activity against multidrug-resistant pathogens. The compounds showed structure-dependent antimicrobial activity against Gram-positive pathogens (S. aureus, E. faecalis, C. difficile). Compounds 14 and 24b showed promising activity against vancomycin-intermediate S. aureus strains, and favorable cytotoxic profiles in HSAEC-1 cells, making them attractive scaffolds for further development. 5-Fluorobenzimidazole, having a 3,5-dichloro-2-hydroxyphenyl substituent, was found to be four-fold, and hydrazone, with a thien-2-yl fragment, was two-fold stronger than clindamycin against methicillin resistant S. aureus TCH 1516. Moreover, hydrazone, bearing a 5-nitrothien-2-yl moiety, showed promising activity against three tested multidrug-resistant C. auris isolates representing major genetic lineages (MIC 16 µg/mL) and azole-resistant A. fumigatus strains harboring TR34/L98H mutations in the CYP51A gene. The anticancer activity characterization demonstrated that the 5-fluorobenzimidazole derivative with a 3,5-dichloro-2-hydroxyphenyl substituent showed the highest anticancer activity in an A549 human pulmonary cancer cell culture model. Collectively these results demonstrate that 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives could be further explored for the development of novel candidates targeting Gram-positive pathogens and drug-resistant fungi.

publication date

  • April 27, 2023

Research

keywords

  • Anti-Infective Agents
  • Antineoplastic Agents
  • Clostridioides difficile
  • Methicillin-Resistant Staphylococcus aureus

Identity

PubMed Central ID

  • PMC10178429

Scopus Document Identifier

  • 85159338430

Digital Object Identifier (DOI)

  • 10.3390/ijms24097966

PubMed ID

  • 37175673

Additional Document Info

volume

  • 24

issue

  • 9