Delay of Aortic Arterial Input Function Time Improves Detection of Malignant Vertebral Body Lesions on Dynamic Contrast-Enhanced MRI Perfusion. Academic Article uri icon

Overview

abstract

  • Dynamic contrast-enhanced MRI (DCE) is an emerging modality in the study of vertebral body malignancies. DCE-MRI analysis relies on a pharmacokinetic model, which assumes that contrast uptake is simultaneous in the feeding of arteries and tissues of interest. While true in the highly vascularized brain, the perfusion of the spine is delayed. This delay of contrast reaching vertebral body lesions can affect DCE-MRI analyses, leading to misdiagnosis for the presence of active malignancy in the bone marrow. To overcome the limitation of delayed contrast arrival to vertebral body lesions, we shifted the arterial input function (AIF) curve over a series of phases and recalculated the plasma volume values (Vp) for each phase shift. We hypothesized that shifting the AIF tracer curve would better reflect actual contrast perfusion, thereby improving the accuracy of Vp maps in metastases. We evaluated 18 biopsy-proven vertebral body metastases in which standard DCE-MRI analysis failed to demonstrate the expected increase in Vp. We manually delayed the AIF curve for multiple phases, defined as the scan-specific phase temporal resolution, and analyzed DCE-MRI parameters with the new AIF curves. All patients were found to require at least one phase-shift delay in the calculated AIF to better visualize metastatic spinal lesions and improve quantitation of Vp. Average normalized Vp values were 1.78 ± 1.88 for zero phase shifts (P0), 4.72 ± 4.31 for one phase shift (P1), and 5.59 ± 4.41 for two phase shifts (P2). Mann-Whitney U tests obtained p-values = 0.003 between P0 and P1, and 0.0004 between P0 and P2. This study demonstrates that image processing analysis for DCE-MRI in patients with spinal metastases requires a careful review of signal intensity curve, as well as a possible adjustment of the phase of aortic AIF to increase the accuracy of Vp.

publication date

  • April 18, 2023

Identity

PubMed Central ID

  • PMC10136448

Scopus Document Identifier

  • 85153960259

Digital Object Identifier (DOI)

  • 10.3390/cancers15082353

PubMed ID

  • 37190282

Additional Document Info

volume

  • 15

issue

  • 8