Compressed Sensing SEMAC MRI of Hip, Knee, and Ankle Arthroplasty Implants: A 1.5-T and 3-T Intrapatient Performance Comparison for Diagnosing Periprosthetic Abnormalities.
Academic Article
Overview
abstract
BACKGROUND. The utility of 3-T MRI for diagnosing joint disorders is established, but its performance for diagnosing abnormalities around arthroplasty implants is unclear. OBJECTIVE. The purpose of this study was to compare 1.5-T and 3-T compressed sensing slice encoding for metal artifact correction (SEMAC) MRI for diagnosing peri-prosthetic abnormalities around hip, knee, and ankle arthroplasty implants. METHODS. Forty-five participants (26 women, 19 men; mean age ± SD, 71 ± 14 years) with symptomatic lower extremity arthroplasty (hip, knee, and ankle, 15 each) prospectively underwent consecutive 1.5- and 3-T MRI examinations with intermediate-weighted (IW) and STIR compressed sensing SEMAC sequences. Using a Likert scale, three radiologists evaluated the presence or absence of periprosthetic abnormalities, including bone marrow edema-like signal, osteolysis, stress reaction/fracture, synovitis, and tendon abnormalities and collections; image quality; and visibility of anatomic structures. Statistical analysis included nonparametric comparison and interchangeability testing. RESULTS. For diagnosing periprosthetic abnormalities, 1.5-T and 3-T compressed sensing SEMAC MRI were interchangeable. Across all three joints, 3-T MRI had lower noise than 1.5-T MRI (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [range, 2-5 and 3-5] vs 3 and 3 [range, 2-5 and 2-4]; p < .01 for both), sharper edges (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [both ranges, 2-5] vs 3 and 3 [range, 2-4 and 2-5]; p < .02 and p < .05), and more effective metal artifact reduction (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [range, 3-5 and 2-5] vs 4 and 4 [both ranges, 3-5]; p < .02 and p = .72). Agreement was moderate to substantial for image contrast (IW and STIR, 0.66 and 0.54 [95% CI, 0.41-0.91 and 0.29-0.80]; p = .58 and p = .16) and joint capsule visualization (IW and STIR, 0.57 and 0.70 [range, 0.32-0.81 and 0.51-0.89]; p = .16 and p = .19). The bone-implant interface was more visible at 1.5 T (median IW and STIR scores, 4 and 4 [both ranges, 2-5] at 1.5 T vs 3 and 3 [both ranges, 2-5] at 3 T; p = .08 and p = .58), but periprosthetic tissues had superior visibility at 3 T (IW and STIR, 4 and 4 [both ranges, 3-5] at 3 T vs 4 and 4 [ranges, 2-5 and 3-5] at 1.5 T; p = .07 and p = .19). CONCLUSION. Optimized 1.5-T and 3-T compressed sensing SEMAC MRI are interchangeable for diagnosing periprosthetic abnormalities, although metallic artifacts are larger at 3 T. CLINICAL IMPACT. With compressed sensing SEMAC MRI, lower extremity arthroplasty implants can be imaged at 3 T rather than 1.5 T.