Long-Term Efficacy of High-Frequency (10 kHz) Spinal Cord Stimulation for the Treatment of Painful Diabetic Neuropathy: 24-Month Results of a Randomized Controlled Trial. Academic Article uri icon

Overview

abstract

  • AIMS: To evaluate the long-term efficacy of high-frequency (10 kHz) spinal cord stimulation (SCS) for treating refractory painful diabetic neuropathy (PDN). METHODS: The SENZA-PDN study was a prospective, multicenter, randomized controlled trial that compared conventional medical management (CMM) alone with 10 kHz SCS plus CMM (10 kHz SCS+CMM) in 216 patients with refractory PDN. After 6 months, participants with insufficient pain relief could cross over to the other treatment. In total, 142 patients with a 10 kHz SCS system were followed for 24 months, including 84 initial 10 kHz SCS+CMM recipients and 58 crossovers from CMM alone. Assessments included pain intensity, health-related quality of life (HRQoL), sleep, and neurological function. Investigators assessed neurological function via sensory, reflex, and motor tests. They identified a clinically meaningful improvement relative to the baseline assessment if there was a significant persistent improvement in neurological function that impacted the participant's well-being and was attributable to a neurological finding. RESULTS: At 24 months, 10 kHz SCS reduced pain by a mean of 79.9% compared to baseline, with 90.1% of participants experiencing ≥50% pain relief. Participants had significantly improved HRQoL and sleep, and 65.7% demonstrated clinically meaningful neurological improvement. Five (3.2%) SCS systems were explanted due to infection. CONCLUSIONS: Over 24 months, 10 kHz SCS provided durable pain relief and significant improvements in HRQoL and sleep. Furthermore, the majority of participants demonstrated neurological improvement. These long-term data support 10 kHz SCS as a safe and highly effective therapy for PDN. TRIAL REGISTRATION: ClincalTrials.gov Identifier, NCT03228420.

authors

publication date

  • August 1, 2023

Research

keywords

  • Diabetes Mellitus
  • Diabetic Neuropathies
  • Spinal Cord Stimulation

Identity

Digital Object Identifier (DOI)

  • 10.1016/j.diabres.2023.110865

PubMed ID

  • 37536514