Molecular Epidemiologic and Geo-Spatial Characterization of Staphylococcus aureus Cultured from Skin and Soft Tissue Infections from United States-Born and Immigrant Patients Living in New York City. Academic Article uri icon

Overview

abstract

  • (1) Background: With increasing international travel and mass population displacement due to war, famine, climate change, and immigration, pathogens, such as Staphylococcus aureus (S. aureus), can also spread across borders. Methicillin-resistant S. aureus (MRSA) most commonly causes skin and soft tissue infections (SSTIs), as well as more invasive infections. One clonal strain, S. aureus USA300, originating in the United States, has spread worldwide. We hypothesized that S. aureus USA300 would still be the leading clonal strain among US-born compared to non-US-born residents, even though risk factors for SSTIs may be similar in these two populations (2) Methods: In this study, 421 participants presenting with SSTIs were enrolled from six community health centers (CHCs) in New York City. The prevalence, risk factors, and molecular characteristics for MRSA and specifically clonal strain USA300 were examined in relation to the patients' self-identified country of birth. (3) Results: Patients born in the US were more likely to have S. aureus SSTIs identified as MRSA USA300. While being male and sharing hygiene products with others were also significant risks for MRSA SSTI, we found exposure to animals, such as owning a pet or working at an animal facility, was specifically associated with risk for SSTIs caused by MRSA USA300. Latin American USA300 variant (LV USA300) was most common in participants born in Latin America. Spatial analysis showed that MRSA USA300 SSTI cases were more clustered together compared to other clonal types either from MRSA or methicillin-sensitive S. aureus (MSSA) SSTI cases. (4) Conclusions: Immigrants with S. aureus infections have unique risk factors and S. aureus molecular characteristics that may differ from US-born patients. Hence, it is important to identify birthplace in MRSA surveillance and monitoring. Spatial analysis may also capture additional information for surveillance that other methods do not.

publication date

  • October 14, 2023

Identity

PubMed Central ID

  • PMC10604313

Digital Object Identifier (DOI)

  • 10.3390/antibiotics12101541

PubMed ID

  • 37887242

Additional Document Info

volume

  • 12

issue

  • 10