Predicting conversion of ambulatory ACDF patients to inpatient: a machine learning approach. Academic Article uri icon

Overview

abstract

  • BACKGROUND CONTEXT: Machine learning is a powerful tool that has become increasingly important in the orthopedic field. Recently, several studies have reported that predictive models could provide new insights into patient risk factors and outcomes. Anterior cervical discectomy and fusion (ACDF) is a common operation that is performed as an outpatient procedure. However, some patients are required to convert to inpatient status and prolonged hospitalization due to their condition. Appropriate patient selection and identification of risk factors for conversion could provide benefits to patients and the use of medical resources. PURPOSE: This study aimed to develop a machine-learning algorithm to identify risk factors associated with unplanned conversion from outpatient to inpatient status for ACDF patients. STUDY DESIGN/SETTING: This is a machine-learning-based analysis using retrospectively collected data. PATIENT SAMPLE: Patients who underwent one- or two-level ACDF in an ambulatory setting at a single specialized orthopedic hospital between February 2016 to December 2021. OUTCOME MEASURES: Length of stay, conversion rates from ambulatory setting to inpatient. METHODS: Patients were divided into two groups based on length of stay: (1) Ambulatory (discharge within 24 hours) or Extended Stay (greater than 24 hours but fewer than 48 hours), and (2) Inpatient (greater than 48 hours). Factors included in the model were based on literature review and clinical expertise. Patient demographics, comorbidities, and intraoperative factors, such as surgery duration and time, were included. We compared the performance of different machine learning algorithms: Logistic Regression, Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). We split the patient data into a training and validation dataset using a 70/30 split. The different models were trained in the training dataset using cross-validation. The performance was then tested in the unseen validation set. This step is important to detect overfitting. The performance was evaluated using the area under the curve (AUC) of the receiver operating characteristics analysis (ROC) as the primary outcome. An AUC of 0.7 was considered fair, 0.8 good, and 0.9 excellent, according to established cut-offs. RESULTS: A total of 581 patients (59% female) were available for analysis. Of those, 140 (24.1%) were converted to inpatient status. The median age was 51 (IQR 44-59), and the median BMI was 28 kg/m2 (IQR 24-32). The XGBoost model showed the best performance with an AUC of 0.79. The most important features were the length of the operation, followed by sex (based on biological attributes), age, and operation start time. The logistic regression model and the SVM showed worse results, with an AUC of 0.71 each. CONCLUSIONS: This study demonstrated a novel approach to predicting conversion to inpatient status in eligible patients for ambulatory surgery. The XGBoost model showed good predictive capabilities, superior to the older machine learning approaches. This model also revealed the importance of surgical duration time, BMI, and age as risk factors for patient conversion. A developing field of study is using machine learning in clinical decision-making. Our findings contribute to this field by demonstrating the feasibility and accuracy of such methods in predicting outcomes and identifying risk factors, although external and multi-center validation studies are needed.

publication date

  • November 21, 2023

Research

keywords

  • Inpatients
  • Outpatients

Identity

Scopus Document Identifier

  • 85179604604

Digital Object Identifier (DOI)

  • 10.1016/j.spinee.2023.11.010

PubMed ID

  • 37980960