The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study.
Academic Article
Overview
abstract
Injury to the posterolateral structures of the knee, including the popliteus tendon and arcuate complex, frequently results in poorly understood patterns of instability. To evaluate the static function of these tissues, we used a mechanical testing apparatus that allowed five degrees of freedom to test seventeen specimens from human cadavera at angles of flexion that ranged from zero to 90 degrees. Selective section of the lateral collateral ligament, popliteus-arcuate (deep) ligament complex, anterior cruciate ligament, and posterior cruciate ligament was performed. At all angles of flexion, the lateral collateral ligament and deep ligament complex functioned together as the principal structures preventing varus rotation and external rotation of the tibia, while the posterior cruciate ligament was the principal structure preventing posterior translation. However, at angles of flexion of 30 degrees or less, the amount of posterior translation after section of only the lateral collateral ligament and the deep structures was similar to that noted after isolated section of the posterior cruciate ligament. Isolated section of the posterior cruciate ligament did not affect varus or external rotation of the tibia at any position of flexion of the knee. When the posterior cruciate ligament was sectioned after the lateral collateral ligament and deep ligament complex had been cut, a large increase in posterior translation and varus rotation resulted at all angles of flexion. In addition, at angles of flexion of more than 30 degrees, external rotation of the tibia also increased. The application of internal tibial torque resulted in no increase in tibial rotation after isolated section of the anterior cruciate ligament or combined section of the lateral collateral ligament and deep ligament complex. However, combined section of all three structures increased internal rotation at 30 and 60 degrees of flexion. The increases in external rotation that were produced by section of the lateral collateral ligament and deep ligament complex were not changed by the addition of the section of the anterior cruciate ligament.