Assessing intraoperative pedicle screw placement accuracy using biplanar radiographs compared to three-dimensional imaging. Academic Article uri icon

Overview

abstract

  • To date, biplanar imaging (2D) has been the method of choice for pedicle screw (PS) positioning and verified for the anteroposterior view and (spinal midline) M-line method. In recent years, the use of intraoperative three-dimensional (3D) imaging has become available with the Gertzbein-Robbins system (GRS) to assess PS breach and positioning confirmation. The aim is to determine if 2D imaging is sufficient to assess PS position in comparison to advanced 3D imaging.Retrospective review of prospectively collected data from 204 consecutive adult patients who underwent posterior thoracic and lumbar instrumented fusion for degenerative spinal surgery by a single surgeon (2019-2022).Of the 204 patients, 187 (91.6%) had intraoperative images available for analysis. A total of 1044 PS implants were used; 922 (88.3%) were robotically placed. Postoperative CT scans were verified with M-line/GRS findings. Among 103 patients (50.5%) with a total of 362 screws, (34.7%) had postoperative CT, intraoperative 3D scan, and intraoperative 2D scan for analysis. Postoperative CT findings were consistent with all GRS findings, validating that 3D imaging was accurate. Screws (1%) were falsely verified by the M-line as 3D imaging confirmed false negative or positive findings.In our series, intraoperative 3D scan was as accurate as postoperative CT scan in assessing PS breach. A significant number of PS may be falsely read as accurate on 2D imaging, that is in fact inaccurate when assessed on 3D imaging. An intraoperative post-instrumentation 3D scan may be preferable to prevent postoperative recognition of a falsely verified screw on biplanar imaging.

publication date

  • February 8, 2024

Research

keywords

  • Pedicle Screws
  • Robotic Surgical Procedures

Identity

Scopus Document Identifier

  • 85184721853

Digital Object Identifier (DOI)

  • 10.1007/s11701-023-01760-2

PubMed ID

  • 38329623

Additional Document Info

volume

  • 18

issue

  • 1