A computational pipeline for clustering left atrial appendage morphology via elastic shape analysis.
Overview
abstract
Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative in nature, and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. We demonstrate that our method reliably clusters LAAs based on their geometric features, and thus provides an avenue to overcome the limitations of current qualitative LAA categorization systems.