Probiotics Pediococcus acidilactici GR-1 promotes the functional strains and remodels gut microbiota to reduce the Cr(VI) toxicity in a dual-chamber simulated intestinal system. Academic Article uri icon

Overview

abstract

  • Numerous animal studies have demonstrated the toxicity of hexavalent chromium [Cr(VI)] and the bioremediative effects of probiotics on the composition and functions of gut microbiota. Since the precise mechanisms of Cr(VI) detoxification and its interactions with human gut microbiota were unknown, a novel dual-chamber simulated intestinal (DCSI) system was developed to maintain both the stability of the simulated system and the composition of the gut microbiota. Probiotic GR-1 was found to regulate intestinal gut microbiota, thereby reducing the toxicity of Cr(VI) within the DCSI system. The results indicate that Cr(VI) levels were reduced from 2.260 ± 0.2438 μg/g to 1.7086 ± 0.1950 μg/g in the gut microbiota cell pellet, and Cr(VI) permeability decreased from 0.5521 ± 0.1132 μg/L to 0.3681 ± 0.0178 μg/L after 48 h in simulated gut fluid. Additionally, the removal rate of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), reducibility (Vitamin C), and total antioxidant capacity (T-AOC) increased by 50.83%, 31.70%, and 27.56%, respectively, following probiotic treatment. The increase in antioxidant capacity correlated with total Cr removal (P < 0.05, r from -0.80 to 0.73). 16S rRNA sequencing analysis showed that gut microbiota composition was reshaped by the addition of probiotics, which regulated the recovery of the functional gut microbiota to normal levels, rather than restoring the entire gut microbiota composition for community function. Thus, this study not only demonstrates the feasibility and stability of culturing gut microbiota but also offers a new biotechnological approach to synthesizing functional communities with functional strains for environmental risk management.

publication date

  • April 7, 2024

Research

keywords

  • Chromium
  • Gastrointestinal Microbiome
  • Pediococcus acidilactici
  • Probiotics

Identity

Digital Object Identifier (DOI)

  • 10.1016/j.chemosphere.2024.141927

PubMed ID

  • 38593954

Additional Document Info

volume

  • 356