Virtual reality-empowered deep-learning analysis of brain cells. Academic Article uri icon

Overview

abstract

  • Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.

publication date

  • April 22, 2024

Research

keywords

  • Brain
  • Deep Learning
  • Virtual Reality

Identity

PubMed Central ID

  • PMC11239522

Scopus Document Identifier

  • 85191101827

Digital Object Identifier (DOI)

  • 10.1038/s41592-024-02245-2

PubMed ID

  • 38649742

Additional Document Info

volume

  • 21

issue

  • 7