Depth-encoding using optical photon TOF in a prism-PET detector with tapered crystals.
Academic Article
Overview
abstract
BACKGROUND: High-resolution brain positron emission tomography (PET) scanner is emerging as a significant and transformative non-invasive neuroimaging tool to advance neuroscience research as well as improve diagnosis and treatment in neurology and psychiatry. Time-of-flight (TOF) and depth-of-interaction (DOI) information provide markedly higher PET imaging performance by increasing image signal-to-noise ratio and mitigating spatial resolution degradation due to parallax error, respectively. PET detector modules that utilize light sharing can inherently carry DOI information from the multiple timestamps that are generated per gamma event. The difference between two timestamps that are triggered by scintillation photons traveling in opposite directions signifies the event's depth-dependent optical photon TOF (oTOF). However, light leak at the crystal-readout interface substantially degrades the resolution of this oTOF-based depth encoding. PURPOSE: We demonstrate the feasibility of oTOF-based depth encoding by mitigating light leak in single-ended-readout Prism-PET detector modules using tapered crystals. Minimizing light leak also improved both energy-based DOI and coincidence timing resolutions. METHODS: × RESULTS: For the tapered (non-tapered) Prism-PET module, the measured full width at half maximum (FWHM) energy, timing, energy-based DOI, and oTOF-based DOI resolutions were 8.88 (11.18)%, 243 (286) ps, 2.35 (3.18) mm, and 5.42 (13.87) mm, respectively. The scanner sensitivities using non-tapered and tapered crystals, and 10 rings of detector modules, were simulated to be 30.9 and 29.5 kcps/MBq, respectively. CONCLUSIONS: The tapered Prism-PET module with minimized light leak enabled the first experimental report of oTOF-based depth encoding at the detector module level. It also enabled the utilization of thinner (i.e., 0.1 mm) inter-crystal spacing with barium sulfate as the reflector while also improving energy-based DOI and timing resolutions.