Phthalate and phthalate replacement concentrations in relationship to adiposity in a multi-racial cohort of children.
Academic Article
Overview
abstract
BACKGROUND/OBJECTIVE: Phthalates and phthalate replacements are used in multiple everyday products, making many of them bioavailable to children. Experimental studies suggest that phthalates and their replacements may be obesogenic, however, epidemiologic studies remain inconsistent. Therefore, our objective was to examine the association between phthalates, phthalate replacements and childhood adiposity/obesity markers in children. SUBJECTS/METHODS: A cross-sectional study was conducted in 630 racial/ethnically diverse children ages 4-8 years. Urinary oxidative metabolites of DINCH and DEHTP, three low molecular weight (LMW) phthalates, and eleven high molecular weight (HMW) phthalates were measured. Weight, height, waist circumference and % body fat were measured. Composite molar sum groups (nmol/ml) were natural log-transformed. Linear regression models adjusted for urine specific gravity, sex, age, race-ethnicity, birthweight, breastfeeding, reported activity level, mother's education and pre-pregnancy BMI. RESULTS: All children had LMW and HMW phthalate metabolites and 88% had DINCH levels above the limit of detection. One unit higher in the log of DINCH was associated with 0.106 units lower BMI z-score [β = -0.106 (95% CI: -0.181, -0.031)], 0.119 units lower waist circumference z-score [β = -0.119 (95% CI: -0.189, -0.050)], and 0.012 units lower percent body fat [β = -0.012 (95% CI: -0.019, -0.005)]. LMW and HMW group values were not associated with adiposity/obesity. CONCLUSIONS: We report an inverse association between child urinary DINCH levels, a non-phthalate plasticizer that has replaced DEHP in several applications, and BMI z-score, waist circumference z-score and % body fat in children. Few prior studies of phthalates and their replacements in children have been conducted in diverse populations. Moreover, DINCH has not received a great deal of attention or regulation, but it is a common exposure. In summary, understanding the ubiquitous nature of these chemical exposures and ultimately their sources will contribute to our understanding of their relationship with obesity.