Molecular profiling of visible polypoid and invisible conventional intestinal-type low-grade dysplasia in patients with idiopathic inflammatory bowel disease. Academic Article uri icon

Overview

abstract

  • AIMS: Little is known about the molecular features of visible polyps with low-grade intestinal-type dysplasia in patients with inflammatory bowel disease (IBD). To better understand their origins and biological potential, we sought to genomically profile these lesions and compare them with invisible low-grade dysplasia and sporadic adenomas from non-IBD patients. METHODS: 22 polyps within areas of colitis, 13 polyps outside areas of colitis, 10 foci of invisible dysplasia from patients with IBD and 6 sporadic tubular adenomas from non-IBD patients were analysed using the OncoPanel assay. RESULTS: Polyps arising in areas of colitis showed a greater spectrum of mutations, including APC, KRAS, FBXW7, TP53, ARID1A and TCF7L2. Polyps outside colitis and non-IBD sporadic adenomas showed a limited mutational profile, with APC and CTNNB1 mutations. Invisible dysplasia was characterised by TP53, CTNNB1 and KRAS alterations. Compared with dysplastic polyps, none of the invisible dysplastic foci showed APC alterations (73%-within colitis; p=0.0001, 92%-outside colitis; p<0.0001, 83%-sporadic adenomas; p=0.001). TP53 mutations were significantly higher in invisible dysplasia (50%) compared with polyps within colitis (9%; p=0.02) and outside colitis (8%; p=0.03). CONCLUSIONS: Molecular alterations in visible low-grade dysplastic polyps with conventional intestinal-type dysplasia from patients with IBD and sporadic adenomas from non-IBD patients overlap significantly. APC alterations appear to play a major role in the development of visible low-grade dysplastic lesions in patients with IBD, regardless of background colitis. As with IBD-associated colorectal cancers, TP53 mutations are an early event in the development of invisible, low-grade conventional intestinal-type dysplasia in patients with IBD.

publication date

  • June 17, 2024

Identity

Digital Object Identifier (DOI)

  • 10.1136/jcp-2024-209601

PubMed ID

  • 38886044