Reversible folding reactions of human apolipoprotein A-I: pressure and guanidinium chloride effects. Academic Article uri icon

Overview

abstract

  • Apolipoprotein A-I, the major structural polypeptide of human high-density lipoproteins, activates lecithin: cholesterol acyltransferase, the cholesterol ester-forming enzyme in plasma. Apolipoprotein A-I, like several other apolipoproteins, exhibits structural adaptability, which is manifest in a low free energy of stabilization and facile changes in secondary structure. We have investigated the dual effects of guanidinium chloride (GdmCl) and pressure perturbation at low GdmCl concentrations on apolipoproteins A-I conformational states, using fluorescence detection. Pressure alone (up to 3 kilobar) is insufficient to fully denature apolipoprotein A-I, and results in formation of metastable state(s). However, in conjunction with low concentrations of GdmCl the calculated volume change upon pressure denaturation increases from approx. -50 ml/mol to -90 ml/mol. The free energy of denaturation by pressure perturbation ranges from 1.4 to 1.8 kcal/mol, but the conformational states induced by pressure and GdmCl perturbation are most likely different. The physico-chemical properties of native and pressure-denatured conformational states can be, readily and reversibly, measured by fluorescence techniques. Biological activity of apolipoprotein A-I in the form of lecithin: cholesterol acyltransferase activation, is also reversible upon pressure perturbation. Samples of apolipoprotein A-I exposed to 2 kbar for an hour activated lecithin: cholesterol acyltransferase equally well as controls. To delineate more precisely the conformational states of apolipoprotein A-I under pressure, time-dependent anisotropy decay measurements, capable of resolving rotational heterogeneity, will be required.

publication date

  • September 11, 1985

Research

keywords

  • Apolipoproteins A
  • Guanidines
  • Phosphatidylcholine-Sterol O-Acyltransferase
  • Pressure

Identity

Scopus Document Identifier

  • 0022359008

PubMed ID

  • 3927983

Additional Document Info

volume

  • 836

issue

  • 2