Twenty years of in vitro nanotoxicology: how AI could make the difference. Academic Article uri icon

Overview

abstract

  • More than two decades ago, the advent of Nanotechnology has marked the onset of a new and critical field in science and technology, highlighting the importance of multidisciplinary approaches to assess and model the potential human hazard of newly developed advanced materials in the nanoscale, the nanomaterials (NMs). Nanotechnology is, by definition, a multidisciplinary field, that integrates knowledge and techniques from physics, chemistry, biology, materials science, and engineering to manipulate matter at the nanoscale, defined as anything comprised between 1 and 100 nm. The emergence of nanotechnology has undoubtedly led to significant innovations in many fields, from medical diagnostics and targeted drug delivery systems to advanced materials and energy solutions. However, the unique properties of nanomaterials, such as the increased surface to volume ratio, which provides increased reactivity and hence the ability to penetrate biological barriers, have been also considered as potential risk factors for unforeseen toxicological effects, stimulating the scientific community to investigate to which extent this new field of applications could pose a risk to human health and the environment.

publication date

  • September 18, 2024

Identity

PubMed Central ID

  • PMC11457712

Scopus Document Identifier

  • 85205577161

Digital Object Identifier (DOI)

  • 10.3389/ftox.2024.1470439

PubMed ID

  • 39376973

Additional Document Info

volume

  • 6