Ferroptosis-Related Gene Signatures: Prognostic Role in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Despite advances in the management of head and neck squamous cell carcinoma (HNSCC), prognostic models and treatment strategies remain inadequate, particularly for HPV-positive oropharyngeal squamous cell carcinoma (OPSCC). The rising incidence of HPV-positive OPSCC highlights an urgent need for innovative therapeutic approaches. Ferroptosis, a regulated form of non-apoptotic cell death, has gained attention for its role in cancer progression, but its potential as a prognostic and therapeutic target in HPV-positive OPSCC remains largely unexplored. This study investigates the role of ferroptosis in HPV-positive OPSCC, aiming to identify prognostic markers and provide insights into potential therapeutic strategies that could improve patient outcomes. METHODS: Thirteen ferroptosis gene expression signatures were retrieved from the literature, and their performance and association to the immune microenvironment were validated on a meta-analysis of 267 HPV-positive cases (Metanalysis-HPV267) and 286 samples from the BD2Decide project (BD2-HPV286). RESULTS: Our analysis revealed that specific ferroptosis-related gene expression signatures, particularly FER3, FER4, FER6, and FER12, are significantly associated (p-value < 0.05) with high-risk patient groups and adverse tumor microenvironment features, including suppressed immune activity and enhanced stromal involvement. Elevated expression of CAV1, a ferroptosis suppressor, further delineates high-risk profiles. CONCLUSIONS: These findings highlight the prognostic significance of ferroptosis in stratifying patients and identifying those with poorer clinical outcomes. Targeting ferroptosis pathways represents a novel and promising approach to addressing the unmet need for effective prognostic and therapeutic strategies in HPV-positive OPSCC. Future research should focus on translating these findings into clinical applications to advance precision oncology and improve outcomes for this growing patient population.

publication date

  • February 5, 2025

Identity

PubMed Central ID

  • PMC11817470

Digital Object Identifier (DOI)

  • 10.3390/cancers17030530

PubMed ID

  • 39941896

Additional Document Info

volume

  • 17

issue

  • 3