Potential Risks of Ocular Molecular and Cellular Changes in Spaceflight. Review uri icon

Overview

abstract

  • PURPOSE: Many fundamental cellular and molecular changes are known to occur in biological systems during spaceflight, including oxidative stress, DNA damage, mitochondrial damage, epigenetic factors, telomere lengthening, and microbial shifts. We can apply the consequences of these molecular changes in ocular cells, such as the retinal ganglion cells and corneal epithelium, to identify ophthalmologic risks during spaceflight. This review aims to discuss the potential molecular changes in greater detail and apply the principles to ocular cells and ophthalmic disease risk in astronauts. METHODS: A targeted, relevant search of the literature on the topic and related topics of ocular surface and spaceflight was conducted with scholarly databases PubMed, Web of Science, and Embase from inception to July2024 with search terms "oxidative stress"; "DNA damage"; "Mitochondrial Dysfunction"; "Epigenetics"; "Telomeres"; "Microbiome"; "ocular cells"; "spaceflight"; "microgravity"; "radiation." RESULTS: A total of 115 articles were included following screening and eligibility assessment. Key findings include molecular changes and their contributions to ophthalmic diseases like cataracts, spaceflight-associated neuro-ocular syndrome, and dry eye syndrome. CONCLUSION: This review provides a comprehensive overview of risks to vision associated with long-duration spaceflight missions beyond low Earth orbit (LEO). Further investigation into targeted countermeasures is imperative to mitigate vision-threatening sequelae in astronauts undertaking deep-space exploration.

publication date

  • March 17, 2025

Identity

Digital Object Identifier (DOI)

  • 10.1080/08820538.2025.2471443

PubMed ID

  • 40094398