Adjunctive left ventricular unloading during myocardial reperfusion plays a major role in minimizing myocardial infarct size. Academic Article uri icon

Overview

abstract

  • Although prompt institution of reperfusion following coronary artery occlusion has been shown to limit myocardial infarct size, significant "reperfusion injury" may result. We investigated in a canine model whether maintenance of the left ventricle in an unloaded state during the initial reperfusion period following acute myocardial ischemia would result in greater limitation of infarct size or modify the development of reperfusion injury. Group I (control, n = 6) underwent 6 hours of occlusion of the left anterior descending coronary artery without further intervention. In both Group II (n = 6) and Group III (n = 6), the snare was released after 2 hours and hearts were reperfused for 4 hours. In Group III only, the left ventricle was maintained in an unloaded state throughout the entire reperfusion interval via pulsatile left atrial-femoral artery bypass. The results showed that reperfusion of the left ventricle in an unloaded state resulted in significantly improved limitation of both infarct size (area of infarct/area at risk = 16.6% for Group III versus 72.0% for Group I and 55.4% for Group II, p less than 0.001) and area of microvascular damage (area of microvascular damage/area at risk = 4.8% for Group III versus 30.6% for Group II, p less than 0.001). These results indicate that although myocardial reperfusion of the type provided by thrombolysis and/or angioplasty techniques does result in limitation of infarct size when compared to no reperfusion, this limitation is not optimal unless the left ventricle is unloaded during the initial reperfusion period.

publication date

  • July 1, 1985

Research

keywords

  • Femoral Artery
  • Heart
  • Heart Arrest, Induced
  • Heart Atria
  • Myocardial Infarction

Identity

Scopus Document Identifier

  • 0021808418

PubMed ID

  • 4010324

Additional Document Info

volume

  • 90

issue

  • 1