Virtual Reality for Pre-Procedural Planning of Interventional Pain Procedures: A Real-World Application Case Series.
Overview
abstract
Background/Objectives: Virtual reality (VR), a component of extended reality (XR), has shown promise in pre-procedural planning by providing immersive, patient-specific simulations. In pain management, where precise anatomical understanding is critical for interventions such as peripheral nerve stimulation (PNS), nerve blocks, and intrathecal pump placement, the application of VR remains underexplored. This case series examines the role of VR in enhancing pre-procedural planning for complex chronic pain interventions. Methods: From August 2022 to December 2024, six patients with anatomically challenging conditions underwent VR-assisted pre-procedural planning at Weill Cornell Medical Center. Patient-specific 3D models were created using the manual or automatic segmentation of imaging data and reviewed in VR to optimize procedural strategies by the surgeons performing the case. Procedures were then performed using conventional fluoroscopic or ultrasound guidance. Results: In all cases, VR facilitated the improved visualization of complex anatomies and informed optimal procedural trajectories. In patients with a complex cancer anatomy, previous surgical changes, or hardware, VR enabled precise PNS lead or needle placement, resulting in significant pain reductions postoperatively. In certain cases where previous interventional pain procedures had failed, VR allowed for a "second opinion" to develop an alternative approach with improved outcomes. Finally, in one case, VR served to potentially prevent patient harm by providing insight to the proceduralists regarding an alternative approach. Across the series, VR enhanced the spatial awareness, procedural accuracy, and confidence in navigating challenging anatomical scenarios. Conclusions: This case series demonstrates the utility of VR in pre-procedural planning for chronic pain interventions. By enabling detailed anatomical visualization and trajectory optimization, VR has the potential to improve outcomes in complex cases. Further studies are needed to evaluate its broader clinical applications and cost-effectiveness in pain management.