Comparative Analysis of RT-PCR and a Colloidal Gold Immunochromatographic Assay for SARS-CoV-2 Detection.
Academic Article
Overview
abstract
Background/Objectives: The COVID-19 pandemic has highlighted the urgent need for rapid, accurate, and accessible diagnostic testing to effectively manage and contain the spread of SARS-CoV-2. RT-PCR is widely recognized as the gold standard for SARS-CoV-2 detection due to its high sensitivity and specificity. However, RT-PCR testing requires specialized laboratory equipment, highly trained personnel, and extended processing times, which limits its feasibility for large-scale screening and point-of-care applications. This study aims to systematically evaluate the diagnostic performance of RT-PCR and a colloidal gold immunochromatographic assay (GICA). Methods: By comparing these two methods, we seek to determine a GICA's effectiveness as a complementary or alternative diagnostic tool, particularly in resource-limited settings and scenarios requiring rapid, large-scale testing. We assessed the following key clinical parameters: sensitivity, specificity, NPV, PPV, and accuracy. Additionally, we investigated the correlation between GICA signal intensity and RT-PCR Ct values using regression analysis, receiver operating characteristic curve analysis, and the calculated area under the curve. Results: Our findings indicate that while RT-PCR exhibits superior sensitivity, GICA results demonstrate a strong correlation with RT-PCR results and provide a rapid, cost-effective alternative for SARS-CoV-2 detection. Unlike RT-PCR, which requires extensive resources and prolonged turnaround times, a GICA delivers results within 20 min, making it a viable option for decentralized testing and real-time public health interventions. Conclusions: These results suggest that a GICA can serve as a complementary diagnostic tool alongside RT-PCR, particularly in resource-limited settings and high-throughput screening scenarios. By integrating GICAs into broader testing strategies, healthcare systems can enhance early detection efforts, improve accessibility to diagnostics, and strengthen pandemic response measures.