Free-Breathing Hybrid Technique for Simultaneous Morphological and Quantitative Abdominal Imaging at 0.55 T.
Academic Article
Overview
abstract
OBJECTIVES: Quantitative proton density fat fraction (PDFF) and R2* estimation at lower field strengths, such as 0.55 T, is challenging due to lower signal-to-noise ratio, reduced fat water chemical shift, and increased T2* relaxation times. In this study, we propose a 3D hybrid technique for abdominal imaging at 0.55 T that enables the simultaneous acquisition of T2-weighted and T1-weighted images and quantification of fat fraction and R2* parameters. MATERIALS AND METHODS: Numerical simulations were performed to optimize a prototype radial hybrid turbo spin echo gradient echo (TSE-GRE) acquisition scheme for improved PDFF and R2* estimation accuracy. Phantom imaging experiments with and without motion were performed to evaluate the sensitivity of the estimation to external motion. Eleven volunteers were imaged on a prototype 0.55 T system. Data were acquired using the proposed technique under free-breathing conditions, and motion-compensated reconstruction was performed using the respiratory signal from a pilot-tone device. Image contrast and estimation performance were compared with conventional acquisition schemes in vitro and in vivo. RESULTS: Numerical simulations indicated R2* estimation accuracy was more sensitive to the choice of echo time compared with PDFF. Performing motion compensation reduced the mean error in R2* from 24 to 5 s-1 while the mean error in PDFF only reduced from 2.7% to 1.6%. The proposed technique generated T2-weighted images with comparable relative liver-spleen contrast as conventional imaging and there were no significant differences (P>0.05) in the PDFF and R2* values estimated from the hybrid technique compared with conventional multi-echo GRE. Further, the free-breathing acquisition allowed improved slice coverage while overcoming breath-hold limitations of conventional acquisition schemes. CONCLUSIONS: The use of a hybrid TSE-GRE acquisition technique can allow simultaneous morphological and quantitative PDFF and R2* estimation at 0.55 T under free-breathing conditions.