Accuracy of Lower Extremity Alignment Correction Using Patient-Specific Cutting Guides and Anatomically Contoured Plates.
Academic Article
Overview
abstract
Background/Objectives: Limb malalignment disrupts physiological joint forces and predisposes individuals to the development of osteoarthritis. Surgical interventions such as distal femur or high tibial osteotomy aim to restore mechanical balance on weight-bearing joints, thereby reducing long-term morbidity. Accurate alignment is crucial since it cannot be adjusted after stabilization with plates and screws. Recent advances in personalized medicine offer the opportunity to tailor surgical corrections to each patient's unique anatomy and biomechanical profile. This study evaluates the benefits of 3D planning and patient-specific cutting guides over traditional 2D planning with standard implants for alignment correction procedures. Methods: We assessed limb alignment parameters pre- and postoperatively in patients with varus and valgus lower limb malalignment undergoing acute realignment surgery. The cohort included 23 opening-wedge high tibial osteotomies and 28 opening-wedge distal femur osteotomies. We compared the accuracy of postoperative alignment parameters between patients undergoing traditional 2D preoperative X-ray planning and those using 3D reconstructions of CT data. Outcome measures included mechanical axis deviation and tibiofemoral angles. Results: 3D reconstructions of computerized tomography data and patient-specific cutting guides significantly reduced the variation in postoperative limb alignment parameters relative to preoperative goals. In contrast, traditional 2D planning with standard non-custom implants resulted in higher deviations from the targeted alignment. Conclusions: Utilizing 3D CT reconstructions and patient-specific cutting guides enhances the accuracy of postoperative limb realignment compared to traditional 2D X-ray planning with standard non-custom implants. Patient-specific instrumentation and personalized approaches represent a key step toward precision orthopedic surgery, tailoring correction strategies to individual patient anatomy and potentially improving long-term joint health. This improvement may reduce the morbidity associated with lower limb malalignment and delay the onset of osteoarthritis. Level of Evidence: Therapeutic Level III.