Towards trustworthy artificial intelligence in musculoskeletal medicine: A narrative review on uncertainty quantification. Review uri icon

Overview

abstract

  • INTRODUCTION: Deep learning (DL) models have achieved remarkable performance in musculoskeletal (MSK) medical imaging research, yet their clinical integration remains hindered by their black-box nature and the absence of reliable confidence measures. Uncertainty quantification (UQ) seeks to bridge this gap by providing each DL prediction with a calibrated estimate of uncertainty, thereby fostering clinician trust and safer deployment. METHODS: We conducted a targeted narrative review, performing expert-driven searches in PubMed, Scopus, and arXiv and mining references from relevant publications in MSK imaging utilizing UQ, and a thematic synthesis was used to derive a cohesive taxonomy of UQ methodologies. RESULTS: UQ approaches encompass multi-pass methods (e.g., test-time augmentation, Monte Carlo dropout, and model ensembling) that infer uncertainty from variability across repeated inferences; single-pass methods (e.g., conformal prediction, and evidential deep learning) that augment each individual prediction with uncertainty metrics; and other techniques that leverage auxiliary information, such as inter-rater variability, hidden-layer activations, or generative reconstruction errors, to estimate confidence. Applications in MSK imaging, include highlighting uncertain areas in cartilage segmentation and identifying uncertain predictions in joint implant design detections; downstream applications include enhanced clinical utility and more efficient data annotation pipelines. CONCLUSION: Embedding UQ into DL workflows is essential for translating high-performance models into clinical practice. Future research should prioritize robust out-of-distribution handling, computational efficiency, and standardized evaluation metrics to accelerate the adoption of trustworthy AI in MSK medicine. LEVEL OF EVIDENCE: Not applicable.

publication date

  • July 28, 2025

Research

keywords

  • Artificial Intelligence
  • Deep Learning
  • Musculoskeletal Diseases
  • Musculoskeletal System

Identity

Digital Object Identifier (DOI)

  • 10.1002/ksa.12737

PubMed ID

  • 40719310