Interfacial properties of model membranes and plasma lipoproteins containing ether lipids. Academic Article uri icon

Overview

abstract

  • The interfacial properties of synthetic ester and ether phosphatidylcholines (PCs) were investigated by using the polarity-sensitive fluorescent probes 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and pyrene. The physical state of the phospholipid matrix was determined by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Single-bilayer phospholipid vesicles formed by sonication and model high-density lipoproteins were studied. On the basis of a number of spectroscopic and thermodynamic criteria, the interfacial regions of PCs and their ether analogues are similar. The fluorescence properties of Prodan in model lipoproteins or single-bilayer vesicles were independent of the phospholipid fatty acyl chain length and polar head group, as well as the substitution of ether linkage for ester bonds in the phospholipid. The spectral shifts correlated mainly with the physical state of the phospholipid. The emission spectrum of Prodan appeared at shorter wavelengths upon transfer from water to liquid-crystalline phospholipid and blue shifted further when the lipid was cooled to its gel phase. The effect of cholesterol in model high-density lipoproteins on the emission spectrum of Prodan was dose dependent and, at 18 mol % cholesterol, the spectrum was similar to that observed in a pure gel-phase lipid and was independent of temperature. The quantum yield of Prodan fluorescence in an ether-PC matrix was similar to that observed in water, whereas in an ester-PC matrix it was enhanced by a factor of about 5. Phospholipid-water partition coefficients of Prodan were independent of the physical state of 1,2-dimyristoyl-sn-glycero-3-phosphocholine or 1,2-tetradecyl-sn-glycero-3-phosphocholine.(ABSTRACT TRUNCATED AT 250 WORDS)

publication date

  • November 19, 1985

Research

keywords

  • Lipid Bilayers
  • Lipoproteins
  • Liposomes

Identity

Scopus Document Identifier

  • 0022429034

PubMed ID

  • 4074734

Additional Document Info

volume

  • 24

issue

  • 24