Parallel stopped-flow interrogation of diverse biological systems at the single-molecule scale.
Academic Article
Overview
abstract
Single-molecule imaging techniques have provided unprecedented insights into functional changes in composition and conformation across diverse biological systems. As with other biophysical methods, single-molecule fluorescence and Förster resonance energy transfer investigations are typically limited to examination of one sample at a time. Consequently, experimental throughput is restricted, and experimental variances are introduced that can obscure functional distinctions in closely related systems. Here, to address these limitations, we introduce parallel rapid exchange single-molecule fluorescence and single-molecule Förster resonance energy transfer to enable simultaneous steady-state and pre-steady-state interrogations of diverse systems. Using this approach, we elucidate the timing of distinct conformational events underpinning β-arrestin1 activation, unmask antibiotic-induced impacts on messenger RNA decoding fidelity and demonstrate that endogenously encoded ribosomal RNA sequence variation modulates antibiotic sensitivity. This generalizable and scalable method promises to broaden the scope and reproducibility of quantitative single-molecule interrogations of biomolecular function.