Biologic Augmentation for Meniscus Repair: A Narrative Review.
Review
Overview
abstract
Meniscal preservation is increasingly recognized as a critical determinant of long-term knee joint health, yet successful repair remains challenging due to the meniscus's limited intrinsic healing capacity. The adult meniscus is characterized by restricted vascularity, low cellularity, a dense extracellular matrix, complex biomechanical loading, and a hostile post-injury intra-articular inflammatory environment-factors that collectively impair meniscus healing, particularly in the avascular zones. Over the past several decades, a wide range of biologic augmentation strategies have been explored to overcome these barriers, including synovial abrasion, fibrin clot implantation, marrow stimulation, platelet-derived biologics, cell-based therapies, scaffold coverage, and emerging biologic and biophysical interventions. This review summarizes the biological basis of meniscal healing, critically evaluates current and emerging biologic augmentation techniques, and integrates these approaches within a unified framework of vascular, cellular, matrix, biomechanical, and immunologic targets. Understanding and modulating the cellular and molecular mechanisms governing meniscal degeneration and repair may enable the development of more effective, mechanism-driven strategies to improve healing outcomes and reduce the risk of post-traumatic osteoarthritis.