Reactive astrocytes express NADPH diaphorase in vivo after transient ischemia.
Academic Article
Overview
abstract
In the hippocampus, ten minutes of transient global ischemia results in the death of CA1 pyramidal cells after a period of one to three days. The neurons in the CA1 region constitutively express NADPH-D (NADPH diaphorase activity). In contrast, astrocytes in the hippocampus do not normally express NADPH-D; but a population of reactive astrocytes (GFAP+ cells) begin to express of NADPH-D one day after transient global ischemia. NADPH-D is thought to be a histological marker for Nitric Oxide Synthase (NOS), the enzyme that is responsible for the synthesis of NO, a potent neurotoxin. We suggest that this increase in NADPH-D/NOS expression is an important element in the sequence of changes that occurs after ischemia, and that NO derived from reactive astrocytes or from neurons may play a causal role in neural cell death after ischemia in the hippocampus.